=z^2+(1-i)z-i

Simple and best practice solution for =z^2+(1-i)z-i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =z^2+(1-i)z-i equation:


Simplifying
0 = z2 + (1 + -1i) * z + -1i

Reorder the terms for easier multiplication:
0 = z2 + z(1 + -1i) + -1i
0 = z2 + (1 * z + -1i * z) + -1i

Reorder the terms:
0 = z2 + (-1iz + 1z) + -1i
0 = z2 + (-1iz + 1z) + -1i

Reorder the terms:
0 = -1i + -1iz + 1z + z2

Solving
0 = -1i + -1iz + 1z + z2

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add 'i' to each side of the equation.
0 + i = -1i + -1iz + 1z + i + z2
Remove the zero:
i = -1i + -1iz + 1z + i + z2

Reorder the terms:
i = -1i + i + -1iz + 1z + z2

Combine like terms: -1i + i = 0
i = 0 + -1iz + 1z + z2
i = -1iz + 1z + z2

Add 'iz' to each side of the equation.
i + iz = -1iz + 1z + iz + z2

Reorder the terms:
i + iz = -1iz + iz + 1z + z2

Combine like terms: -1iz + iz = 0
i + iz = 0 + 1z + z2
i + iz = 1z + z2

Reorder the terms:
i + iz + -1z + -1z2 = 1z + -1z + z2 + -1z2

Combine like terms: 1z + -1z = 0
i + iz + -1z + -1z2 = 0 + z2 + -1z2
i + iz + -1z + -1z2 = z2 + -1z2

Combine like terms: z2 + -1z2 = 0
i + iz + -1z + -1z2 = 0

The solution to this equation could not be determined.

See similar equations:

| 36/4=x/6 | | 3=lg(x-20) | | h(1)=4x+1 | | 10a-7a=3 | | 3x^2-2x-19=0 | | 13z-7z-4z+3z-4z=6 | | h(-4)=4x+1 | | 700/50=35/w | | 6(b-24)=7.6 | | =z^2-(1-i)z-i | | -3(3x+1)=[4x+(6x-5)]+x+7 | | 2k-k=13 | | x^(-3/2) | | -2.56+c=-0.89 | | h(-5)=4x+1 | | 34-2/5 | | 3/2=x/5 | | 72/9=24/z | | 4-2y=0.8y-8.8+0.4y | | 6x+4(y+3)=13 | | 33r=11/3 | | 2k-8k-11=z | | 1.5x+.75y=8.5 | | 3x-5x-15x=-510 | | 59x+6y=1619 | | X-3+6x=5+8x | | r/4-3=1 | | 33/r=x/6 | | 1.5x-.75y=8.5 | | 8(x+5)=180 | | 5x+8-2x-2=6+4 | | 14/x=70/10 |

Equations solver categories